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ABSTRACT

A new version of the HZETRN code capable of simulating HZE ions with either laboratory or space boundary
conditions is under development.  The computational model consists of combinations of physical perturbation
expansions based on the scales of atomic interaction, multiple scattering, and nuclear reactive processes with use of
asymptotic/Neumann expansions with non-perturbative corrections.  The code contains energy loss with straggling,
nuclear attenuation, nuclear fragmentation with energy dispersion and downshifts, and off-axis dispersion with
multiple scattering under preparation.  The present benchmark is for a broad directed beam for 1 A GeV iron ion
beams with 2 A MeV width and four targets of polyethylene, polymethyl metachrylate, aluminum, and lead of
varying thickness from 5 to 30 g/cm2.  The benchmark quantities will be dose, track averaged LET, dose averaged
LET, fraction of iron ion remaining, and fragment energy spectra after 23 g/cm2 of polymethyl metachrylate.

INTRODUCTION

Our early interest in transport code development paralleled the experimental studies of Walter
Schimmerling et al. (1986) at the Lawrence Berkeley Laboratory and involved solving the Boltzmann transport
equation for mono-energetic ion beams in the context of the continuous slowing down approximation (Wilson et al.
1984). The main computational limitation was found to be the inadequacy of available nuclear data by comparing
computational results to the ionization data for a broad beam of 20Ne ions (Wilson et al. 1984, Shavers et al. 1993).
Emphasis was soon overtaken by the need to establish the scope of the GCR protection problem and marching
procedures were used to get first order estimates of shielding requirements (Wilson et al. 1991).  Testing the new
marching computational model against atmospheric air shower data again pointed to the inadequacy of the available
nuclear data (Wilson and Badavi 1986) and development of a semi-empirical nuclear model followed, leading to
reduced computational errors (Wilson et al. 1987a, 1987b).  The next several years emphasized spaceflight
validation of the marching solution and nuclear model improvements (Shinn et al. 1998, Cucinotta et al. 1998,
Wilson et al. 1995).  Advanced solution methods of the Boltzmann equation continued to develop (Wilson et al.
1994a,b) but only slowly after NASA support for deterministic transport code and nuclear model development
ended in 1995 in favor of Monte Carlo methods (Armstrong and Colburn 2001, Pinsky et al. 2001). Recent renewed
interest within NASA for deterministic code development is giving new emphasis to improved solution methods,
but without the aid of nuclear modeling activity (Wilson et al. 2003).  As a result, current developments utilize the
older semi-empirical NUCFRG2 model (Wilson et al. 1995b) with energy downshifts and momentum dispersion
(Tripathi et al. 1994).  Comparison of NUCFRG2 with other models and experiments are given by Zeitlin et al.



(1997). In the current report, we will first review the current status of code development with emphasis on future
needs.  Within current limitations, we will present the benchmark results requested by the invitation using a newly
developed code based on three-term Neumann expansions with nonperturbative corrections above the third
Neumann term (Tweed et al. 2004).

DETERMINISTIC CODE DEVELOPMENT

The relevant transport equations are the linear Boltzmann equations derived on the basis of conservation
principles (Wilson et al. 1991) for the flux density φj(x, Ω, E) for particle type j as

Ω•∇φj(x,Ω,E)= ∑∫ σjk(Ω,Ω′,E,E′) φk(x,Ω′,E′) dΩ′ dE′ - σj(E) φj(x,Ω,E)              (1)

where σj(E) and σjk(Ω,Ω′,E,E′) are the shield media macroscopic cross sections.  The σjk(Ω,Ω′,E,E′) represent all

those processes by which type k particles moving in direction Ω ′  with energy  E′ produce a type j particle in
direction Ω with energy E (including decay processes).  Note that there may be several reactions that produce a
particular product, and the appropriate cross sections for equation (1) are the inclusive ones.  Exclusive processes
are functions of the particle fields and may be included
once the particle fields are known.  The total cross
section σj (E) with the medium for each particle type is

   σj (E) = σj,at (E) + σj,el (E) + σj,r (E)  (2)

where the first term refers to collision with atomic
electrons, the second term is for elastic scattering on the
nucleus, and the third term describes nuclear reactions
where we have ignored the minor nuclear inelastic
processes.  The corresponding differential cross sections
are similarly ordered. Many atomic collisions (~106)
occur in a centimeter of ordinary matter, whereas ~103

nuclear coulomb elastic collisions occur per centimeter,
while nuclear reactions are separated by a fraction to
many centimeters depending on energy and particle
type.  Solution methods first use perturbations based on
the ordering of the cross sections with atomic
interactions as the first physical perturbation with
special methods used for neutrons for which atomic
cross-sections are zero.

We rewrite equation (1) in operator notation by
defining a vector array field function as

Φ = [φj(x, Ω, E)]                (3)

the drift operator

    D = [Ω•∇]                (4)
and the interaction operator

     I = [∑∫ σjk(Ω,Ω',E,E') dΩ' dE' - σj(E)]            (5)

with the understanding that I has three parts associated
with atomic, elastic, and reactive processes as given in
equation (2).  Equation (1) is then rewritten as

          [D- Iat - Iel]•Φ =  Ir•Φ                  (6)

where the first two physical perturbation terms are
shown on the left-hand side and are represented by a
diagonal operators. The first order physical perturbation

Fig. 1 Range of ions in aluminum.

Fig. 2 FWHM of 49.1 MeV protons.



for atomic processes is solution of

                  [D- Iat]•Φ =  0                       (7)

using the moments methods and approximated by

Φ (z,E) = exp[- (E - <E(z)>)
2

/(2s
2

(z))]/(√(2π) s(z))       (8)

where the array of mean residual energies <E(z)> and the energy deviation s(z) are evaluated using a second order
Green’s function (Wilson et al. 2002) and related to range and full width at half maximum (FWHM) shown in Figs.
1 and 2. Although straggling correction for the uncollided beam is important, it is negligible in the higher order
terms compared to the energy dispersion in fragmentation.

The second physical perturbation term is the coulomb scattering by the atomic nucleus as a solution of

                  [D - Iel]•Φ =  0                       (9)

 and represented by Rutherford scattering modified by
screening of the nuclear charge by the orbital electrons using
the Thomas-Fermi distribution for the atomic orbitals. We
will utilize the multiple scattering solutions of Fermi given
by

    Φ (z,r,θr) = [√3 w2/2π z2]
                      × exp[-w2(θr

2/z–3rθr/z2+3r2/z3)]              (10)

where z is the longitudinal distance, r is the lateral distance,
θr is the angle to the longitudinal axis, and w2 the array of
appropriate diffusion coefficients.  Strictly speaking, the
solution applies only over intervals for which the variation
in ion energy is small.  It follows that the mean square angle
(understood as a differential quantity) in traveling a distance
dz is given from equation (10) as

〈θr
2〉 = 2 dz/w2        (11)

Conversely, one finds for a uniform nuclear charge
distribution shielded by a Thomas-Fermi atomic structure

〈θr
2〉 = dz (ZPEs/βpc)2/X0        (12)

so that
w2 = 2X0 (β pc ⁄ ZPΕs)

2        (13)
where

Es = √(4π µe
2/α) = 21.2 MeV        (14)

with α the fine structure constant, p the ion momentum
array, the array β of ion speeds relative to the speed of light
c, ZP the array of projectile charges, and X0

 is the electron
radiation length in the material.  The electron radiation
length (g/cm2) is given by

X0
-1 = 4α (NA/A) ZT

2r0
2 ln(181ZT

-1/3)        (15)

with Avagadro’s number NA, A the molecular weight, and r0 the classical electron radius. We will be using
Schimmerling and coworkers modifications to Fermi’s width formula (1986, Wong et al. 1989).  Multiple
scattering played a critical role in prior experimental validation of the transport solutions (Shavers et al.
1990,1993). An example of multiple Coulomb scattering is given in Fig. 3 showing the emerging ion angular
distribution on the beam axis and off the beam axis for 600 A MeV iron ions in aluminum. The iron ions on the
beam axis remain highly peaked in the forward direction while those that have scattered off axis exhibit wider
angular divergence.  In all cases the angular dispersion is small and clearly will be important only for the uncollided
beam ions.

Fig. 3 Multiple Coulomb scattering of 600 A MeV
iron ions in a 5 g/cm2 aluminum target.

Fig. 4 Isotropic and forward neutron spectra  produced
by 500 MeV proton in aluminum.
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The third order physical perturbation involves the nuclear reactive processes represented by the operator Ir
of equation (6), rewritten as follows

[D – Iat –Iel + σr]• Φ = { ∫ σr(Ω,Ω′,E,E') dΩ' dE'}• Φ  ≡ Ξr• Φ      (16)
The off-diagonal nuclear reactive differential cross sections can be written in the following form

   σjk,r(Ω,Ω′,E,E′) = σjk,iso(E,E′)/4π + σjk,for(Ω,Ω′,E,E′)             (17)

where the first term is isotropic and associated with lower energy particles produced including target fragments and
the second term is highly peaked in the forward direction and is associated mainly with direct quasi-elastic events
and projectile fragmentation products (Wilson 1977, Wilson et al. 1988).  Surprisingly, even nucleon-induced
reactions follow this simple form and the isotropic
term extends to relatively high energies (see Fig. 4).
For nucleon induced reactions, the following form has
been used in versions of FLUKA (Ranft 1980) as
follows

σjk,r(Ω,Ω′,E,E′) = νjk(E′) σjk,r(E′)fjk(E,E′)

                          ×  gR(Ω•Ω′,Ε,ΑΤ)                          (18)

where νjk(E′) is multiplicity and the Ranft factor used
in FLUKA is

      gR(Ω•Ω′,Ε,ΑΤ) = ΝR exp[-θ2/λR] π⁄2≥θ≥0        (19)

and constant for larger values of production angle θ ,
NR  is normalization constant, and λR given by Ranft
as

           λR = (0.12 + 0.00036AT/E)                (20)

although new generalized fits are being derived.  This
separation in phase space will be further exploited in
computational procedures.    The heavy ion projectile fragment cross sections are further represented by

σjk,for(Ω,Ω′,E,E′)= σjk,r(E′) Nt exp[-2m√(E″)(1−Ω•Ω′)/εt,jk] × exp[ - (E + λjk –E′)2/2 εjk
2]/√(2πεjk

2)           (21)

where λjk is related to the momentum downshift, εjk is related to the longitudinal momentum width, εt,jk is related to
the transverse momentum width, and Nt is the transverse normalizing factor.  Since the transverse width is small
compared to the projectile and fragment energy the transverse function is highly peaked about the forward direction
(Ω•Ω′ ≈ 1).

Atomic interactions limit the contributions of charged particles in the transport process.  For example, the
protons and alpha particles produced in aluminum below 100 A MeV contribute to the fluence only within a few
centimeters of their collision source and the heavier ions are even more restricted (see Fig. 1).  This is an important
factor in that the transported secondary charged particle flux tends to be small at low energies and the role of
additional nuclear reactions are likewise limited (see Fig. 5).

The reaction cross section is separated by equation (17) into isotropic and forward component for which
equation (16) may be written as coupled equations

[D – Iat –Iel + σr]• Φfor = { ∫ σr,for(Ω,Ω′,E,E') dΩ' dE'}• Φfor≡ Ξr,for• Φfor          (22)
and
                 [D – Iat –Iel + σr]• Φiso = { ∫ σ

r
(Ω,Ω',E,E') dΩ' dE'}• Φiso+ { ∫σ

r,iso
(Ω,Ω',E,E') dΩ′ dE'}• Φfor≡ Ξr• Φiso + Ξr,iso• Φfor              (23)

Equation (22) can be written as a Volterra equation (Wilson 1977, Wilson et al. 1991) and solved as

                                                Φfor = [G + G•Ξr,for•G + G•Ξr,for•G•Ξr,for•G +…]•ΦB                                                    (24)

for which the series can be evaluated directly as described elsewhere (Wilson et al. 1994a).

Fig. 5 Probability of nuclear reaction as a function of ion type
and energy.



The cross term in equation (23) gives rise to a nearly
isotropic source of light ions of only modest energies and
neutrons.  The high-energy portion of the isotropic spectra
arises from multiple scattering effects and the Fermi motion of
the struck nucleons within the nucleus.  The low-energy
isotropic spectra arise from decay processes of the struck
nucleus.  Spectral contributions to the Neumann series depend
on the particle range and probability of surviving nuclear
reactions that establish the functional form of the G matrix.
The second term of the Neumann series is proportional to the
probability of nuclear reaction that is limited by the particle
range as discussed above and shown in Fig. 5.  It is clear from
Fig. 5 that those nuclear reactions for the charged particles
below a few hundred A MeV are infrequent for which fast
convergence of the Neumann series is expected.  For the
moment we will neglect the straggling and multiple-elastic
processes to simplify the present explanation (these provide only minor corrections to space radiation exposures but
important in laboratory testing) and examine the remaining reactive terms of equation (22).  The corresponding
Volterra equation is given (Wilson 1977) by
 φj(x,Ω,E) = {Sj(Eγ)Pj(Eγ) φj(Γ(Ω,x),Ω,Eγ) + Σ∫E

EγdE′AjPj(E′)∫E’
∞∫4π dE″dΩ′ σjk,for(Ω,Ω′,E′,E″)

                           × φk(x+[Rj(E) – Rj(E′)]Ω,Ω′,E″)}/ Sj(E)Pj(E)                       (25)

where Γ is the point on the boundary connected to x along -Ω, Eγ = Rj
-1[ρ - d + Rj], ρ is the projection of x onto Ω,

and d is the projection of Γ onto Ω.  Equation (24) results from the Neumann series solution to equation (25).  In
the past we have expanded the angular integral over Ω′ asymptotically and implemented as a marching procedure
(HZETRN, Wilson and Badavi 1986), as a perturbation expansion (Wilson et al. 1984), and by non-perturbative
approximation (Wilson et al. 1994a) resulting in three distinct methods to evaluate the first order asymptotic terms,
all of which have had extensive experimental validation (Shavers et al. 1993, Wilson et al. 1998, Shinn et al. 1998).
Independent of the method used to evaluate the lowest order term, the first correction term is found by replacing the
fluence in the integrand of equation (25) by the lowest order asymptotic solution as

φj(x,Ω,E) = {Sj(Eγ)Pj(Eγ) φj(Γ(Ω,x),Ω,E) + Σ∫E
EγdE′AjPj(E′)∫E’

∞∫4π dE″dΩ′ σjk,for(Ω,Ω',E′,E″)

                          × φk,o(x+[Rj(E) – Rj(E′)]Ω′,Ω′,E″)}/ Sj(E)Pj(E)                       (26)

where φj(x,Ω,E) is found as an integral over the neighborhood of rays centered on Ω  using the lowest order

asymptotic solution φk,o(x,Ω′,E″) along an adjacent ray directed along Ω′.  Note that the boundary condition reached

along -Ω′ enters through the lowest order asymptotic approximation and the angular integral correction in equation
(25) is determined by the homogeneity and angular dependence of the space radiation and radius of curvature of the
bounding material as we have shown long ago (Wilson and
Khandelwal 1974, Wilson 1977).  These are the determinant
factors of the magnitude of the first order asymptotic
correction which is anticipated to be very small for human
rated systems (large radius of curvature) in space radiation
which is homogeneous and isotropic in most applications
(Wilson et al. 1991, Wilson et al. 1994b).

In a region of small radius of curvature the specific
flux components near the site of evaluation will be missing
contributions along adjacent rays which do not compensate
losses along the ray on which the solution is evaluated
representing the losses due to leakage. (Note, an asymptotic
treatment of such small angle dependent phenomena is the
only useful approach circumventing large discretization
errors.)  This computational procedure is only a small addition
to prior code development and will have little impact on
computational efficiency.  The angular dependence of the

Fig. 6  Normalized transverse components for
Ca fragmentation.

Fig. 7 Calculated fragment fluence for 1 A GeV iron
ion beam behind 23 g/cm2 of PMMA.



integral kernel of equation (26) is controlled by the forward reactive cross section  σjk,for(Ω,Ω′,E′,E″) with its highly
peaked structure given by equations (18) or (21) depending on particle type.  The angular dependence of the
forward peak of fragmenting Ca ions at 100 and 1,000 A MeV is shown in Fig. 6.  The low-energy ions with
limited range have transverse components on the order of 10 degrees reducing to a few degrees at high energies.  It
should be clear that the added divergence added by multiple Coulomb scattering of such fragments (Fig. 3) is
negligible to the large angular widths of the fragmentation event (Fig. 6) further justifying equation (25).

Note that the low energy ions have limited range and will contribute little to the transported flux (see Fig.
1) or nuclear reactions (see Fig. 5).  The higher energy ions, with their much longer pathlengths giving more
important contributions, are related to only a very small
angle of acceptance (few degrees) at the boundary.  The
form of the kernel leads directly to a Gauss-Hermite
expansion and evaluation over the angle of production.
Although the neutron Neumann series for the forward
components converge more slowly since their contribution
to the neutron flux is not limited by atomic interactions these
higher energy neutrons will be adequately evaluated by
similar procedures.  Higher order asymptotic terms can be
evaluated with similar iteration of equation (26) if required
but all indications are that the first such correction will be
small for space radiation.  This leaves the diffuse
components of neutrons and light ions produced in the
collision of the forward components and transported by
equation (23) to be resolved (see for example, Clowdsley et
al. 2000).

The transport from the low-energy neutron and
light-ion isotropic sources in equation (23) dominates the
solution below about 70 A MeV (see Fig. 4).  In this region
light-ion transport is completely dominated by the atomic interaction terms and only a very small fraction have
nuclear reactions making only minor contributions to the particle fields.  This is especially true for the target
fragments that can be solved in closed form (Wilson 1977, Cucinotta et al. 1991).  The transport solution for the
isotropic ion source terms to the lowest order perturbation is given by

               φj,isoo(x,Ω,E) = Σ∫E
Eγ dE′AjPj(E′)∫E’

∞∫4π dE″dΩ′ σjk,iso,r(Ω,Ω',E′,E″) φk,for(x+[Rj(E) – Rj(E′)]Ω,Ω′,E″)/ Sj(E)Pj(E)            (27)

and will give highly accurate solutions to equation (23) since very few of the ions will have reactions (see Fig. 5),
but could be easily corrected using the
HZETRN light-ion propagator applied to the
diffusive source terms.  Note the E′ integral
effectively sums the ion source terms along
direction Ω from the boundary to x.  Also, the
nuclear survival terms Pj(E) are all near unity
(see Fig. 5 showing 1 - Pj(E)).

THE BENCHMARK

The current status of computational
procedures are detailed by Tweed et al. (2004)
with validation of these procedures by Walker et
al. (2004). The benchmark quantities requested
are for shielding materials of polyethylene,
polymethyl metachrylate (PMMA), aluminum,
and lead over the thickness range of 5 to 30
g/cm2.  The quantities requested are:

     Dose (unit fluence):

Fig. 8 Iron ion spectra after 23 g/cm2 of PMMA.

Fig. 9  Iron ion fragment spectra behind 23 g/cm2 of PMMA.



        D(x) = KΣj ∫ dΩ dE Lj(E)   φj(x,Ω,E)

     Track averaged LET: 

        〈LET〉trk = Σj ∫ dΩ dE Lj(E)   φj(x,Ω,E)

                            /Σj ∫ dΩ dE  φj(x,Ω,E)

     Dose averaged LET:

        〈LET〉dose = Σj ∫ dΩ dE Lj(E)2  φj(x,Ω,E)

             /Σj ∫ dΩ dE Lj(E )  φj(x,Ω,E)

     Fraction of  Fe-ions:

        Fsurviving (x) =  ∫ dΩ dE   φj(x,Ω,E)

 / incident ion fluence (unity)

     Fragment spectrum at 23 g/cm2 PMMA:

        Fj(x,E) = ∫ dΩ   φj(x,Ω,E)

        / incident ion fluence (unity)

where K is conversion from MeV/g to nGy
(K=1.602).  In that the full angular
dependence is lacking in the present
computational model (Tweed et al. 2004), we
have fit a re-normalization constant to the
light ion data of Zeitlin, Miller, and Heilbronn
with resulting values of 0.02 (Z=1) and 0.08
(Z=2) as discussed by Walker et al. (2004).
The dose, track and dose averaged LET, and
fraction of surviving Fe-ions are given in
Table 1.  The iron ion range, R0, for each
target material is given in the table.   The
fragment charge spectra penetrating 23 g/cm2

of PMMA is given in Fig. 7.  The energy
spectra of the penetrating iron ions and iron
fragments are shown in Fig. 8.  The shift of
the iron fragment spectra to lower energies
relative to the surviving beam particles
resulting from loss of inertia is clearly seen in
the graph. Similar observations were made in the neon beam experiments of Schimmerling et al. (Shavers et al.
1993).  The ion fragment spectra are shown in Fig. 9.

CONCLUSIONS

The present benchmark is a useful exercise for comparison of computational procedures and atomic/nuclear
database.  The first several months of the current project has been mainly focused on advancing computational
procedures (Tweed et al. 2004), validation of those procedures (Walker et al. 2004), and providing a sensitivity
analysis on the 14,365 nuclear parameters required for space radiation simulations (Heinbockel et al. 2004).  This
has left little time for improving the physical description of the transport process that is further hampered by lack of
a supporting basic nuclear physics program.  The main progress is towards implementing multiple Coulomb
scattering into the formalism to be followed by off axis nuclear fragmentation components with a simplified nuclear

Table 1. Benchmark parameters for 1 A GeV iron ions in the four
requested materials.

Polyethylene (R0= 25.3 g/cm2)
Depth
(g/cm^2)

<LET>trk

(keV/µm)
<LET>dose

(keV/µm)
Dose
(nGy)

Fraction Surviving
Fe56     Fe55,54      Total

5 112.9 142.4 180.8 0.50 0.030 0.53
10 92.3 139.2 147.9 0.25 0.032 0.29
15 82.3 143.4 131.9 0.13 0.025 0.15
20 81.1 163.8 129.9 0.067 0.019 0.085
25 98.5 274.9 157.8 0.035 0.0076 0.043
30 33.0 295.7 52.8 0 0 0

PMMA (R0= 26.1 g/cm2)
Depth
(g/cm^2)

<LET>trk

(keV/µm)
<LET>dose

(keV/µm)
Dose
(nGy)

Fraction Surviving
Fe56     Fe55,54      Total

5 116.1 143.7 186.1 0.54 0.029 0.57
10 96.3 141.0 154.1 0.29 0.032 0.32
15 86.1 144.8 138.0 0.16 0.027 0.19
20 84.7 162.5 135.7 0.088 0.021 0.11
25 116.9 301.7 187.2 0.050 0.015 0.065
30 42.3 334.3 67.8 0 0 0

Aluminum (R0= 33.9 g/cm2)
Depth
(g/cm^2)

<LET>trk

(keV/µm)
<LET>dose

(keV/µm)
Dose
(nGy)

Fraction Surviving
Fe56     Fe55,54      Total

5 133.3 150.1 213.5 0.78 0.0093 0.79
10 119.2 151.3 191.0 0.61 0.015 0.63
15 109.4 154.6 175.2 0.48 0.017 0.50
20 104.5 162.3 166.7 0.38 0.018 0.40
25 104.5 179.1 167.4 0.30 0.018 0.32
30 120.3 229.9 192.7 0.24 0.017 0.25

Lead (R0= 50.5 g/cm2)
Depth
(g/cm^2)

<LET>trk

(keV/µm)
<LET>dose

(keV/µm)
Dose
(nGy)

Fraction Surviving
Fe56     Fe55,54      Total

5 147.2 152.0 235.8 0.93 0.0015 0.93
10 144.0 154.3 230.6 0.86 0.0028 0.87
15 141.5 157.3 226.7 0.80 0.0040 0.81
20 139.9 161.5 224.2 0.75 0.0050 0.75
25 139.9 167.3 224.1 0.69 0.0058 0.70
30 141.9 175.8 227.3 0.65 0.0065 0.65



model.  The next step will be detailed studies of the first Neumann term including straggling and multiple Coulomb
scattering to better relate to geometries found in the laboratory setting.
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