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Abstract

This paper presents a simple universal parameterization of total reaction cross
sections for any system of colliding nuclei that is valid for the entire energy range
from a few AMeV to a few AGeV. The universal picture presented here treats proton-
nucleus collision as a special case of nucleus-nucleus collision, where the projectile
has charge and mass number of one. The parameters are associated with the physics
of the collision system. In general terms, Coulomb interaction modifies cross sections
at lower energies, and the effects of Pauli blocking are important at higher energies.
The agreement between the calculated and experimental data is better than all earlier
published results.

Introduction whererg is energy-independend, is either an energy-
independent or energy-dependent parameterAarahd

_Transportation of energetic ions in bulk matter is of o_ 516 the projectile and target mass numbers, respec-
direct interest in several areas (ref. 1), including shield- tively. This form of parameterization works nicely for

ing against ions originating from either space radiations higher energies. However, for lower energies, Coulomb
or terrestrial accelerators, cosmic ray propagation studi€Snieraction becomes important and modifies reaction
in a galactic medium, or radiobiological effects resulting .oss sections significantly. In addition, strong absorp-
from the workplace or clinical exposures. For carcino- (ion models suggest energy dependence of the interaction

genesis, terrestrial radiation therapy, and radiobiological 4 4is. Incorporating these effects, and other effects dis-
research, knowledge of the beam composition and inter, ,ssed later in the text, we propose the following form
actions is necessary to properly evaluate the effects Oy the reaction cross section:
human and animal tissues. For proper assessment of radi-
ation exposures, both reliable transport codes and accu- T D2 B O
rate input parameters are needed. OR = TrrO%AP +ATTH+ 6ED %—E—mm 3

One such important input is the total reaction ¢
(og) cross section, defined as the total;) minus the  wherery= 1.1 fm, ancEy,is the colliding system center
elastic(a,,) cross sections for two colliding ions: of mass energy in MeV. The last term in equation (3) is
the Coulomb interaction term, which modifies the cross
section at lower energies and becomes less important as
the energy increases (typically after several tens of
AMeV). In equation (3)B is the energy-dependent Cou-
lomb interaction barrier (factor on right side of eq. (3))
and is given by

O = Op =0y, 1)

In view of its importance, the total reaction cross sec-
tionhas been extensively studied both theoretically
(refs.1-14) and experimentally (refs. 15—-24) for the past
five decades. A detailed list of references is given in ref-
erences 1, 13, and 16. Empirical prescriptions have been 1.447 .7
developed (refs. 2—4, 10, 11, and 13) for the total reaction B = P T
cross sections working in various energy ranges and R
combination of interacting ions. The present model
works in all energy ranges with uniform accuracy for any
combination of interacting ions, including proton-
nucleus collisions, and is more accurate than earlier
reported empirical models (ref. 10), which were accurate
above 100 AMeV but showed large errors up to 25 per- 1,2%&é/3+ A%/:’E

cent at lower energies. R=rp+r+ ———— (5)

E1/3

cm

(4)

whereZp andZy are the atomic numbers of the projectile
and target, respectively, af the distance for evaluat-
ing the Coulomb barrier height, is

Model Description
wherer; is equivalent sphere radius and is related to the

Most of the empirical models approximate the total s, radius by

reaction cross section of Bradt-Peters form with
r = 1.29rrms’i (6)

2
_ 2 K173 1/3 0
= T + A -
R "o EAP T 70 O @ with (i =P,T).



The energy dependence in the reaction cross sectioffior the proton-nucleus case, because there is not much
at intermediate and higher energies results mainly fromcompression effect, a single constant valu®of 2.05
two effects—transparency and Pauli blocking. This gives very good results for all proton-nucleus collisions.
energy dependence is taken into accougirnwhich is For alpha-nucleus collisions, where there is a little com-

given by pression, the best value Dfis given by
1307
8 = 1.855+ 165/ E°H-C 3 5,2
E E - 0 0
a m{J] ] D = 2.77-58.0x 10° A5+ H1.8x 10 AT
+[0. -
[0-9K(Ar —2Z7)Zp/ (ArAp)] % — 0.8/ 1+ exp[( 250-E)/75]} (11)
whereSis the mass asymmetry term given by For lithium nuclei, because of the “halos” (ref. 21), com-
pression is less; therefore, the Pauli blocking effect is
Aé/SA-}-B less important. A reduced value 8f3 gives better
5= results for the reaction cross sections at the intermediate
Ailj/3+ A¥3 (8) and higher energies.

There are no adjustable parameters in the model
except that, for proton-nucleus collisions, this method of
calculating the Coulomb interaction barrier underesti-
Fates its value for the very light closed-shell nuclei of
alpha and carbon, which are very tightly bound and,
therefore, compact. Consequently, for these two cases,
Cg = D[1- exp(—E/40)]- 0.292exp(—E/ 792) the Coulomb barrier should be increased by a factor of 27
and 3.5, respectively, for a better fit.

and is related to the volume overlap of the collision sys-
tem. The last term on the right side of equation (7)
accounts for the isotope dependence of the reaction cros
section. The ternCg is related to both the transparency
and Pauli blocking and is given by

0.459]
x cos 226" ®)  Results and Conclusions

where the collision kinetic enerdgyis in units of AMeV. Figures 1-45 show the plots of available results for
Here,D is related to the density dependence of the collid- proton-nucleus, alpha-nucleus, and nucleus-nucleus col-
ing system, scaled with respect to the density of-fe lisions. Figures 6 and 18 also show comparisons with
+1%C colliding system: referencel0. The data set used for figures 1-5 was col-
lected from references 15 and 23 and, for figures 6-14,
_ Pa, *Pa; was obtained from references 16, 17, 22, and 23. Exten-

D = 1'75m‘ (10) sive data available for a C + C system (fig. 18) were

¢ taken from references 16, 17, 23, and 24. For the remain-
The density of a nucleus is calculated in the hard- Ing figures, data were collected from the compilation of
sphere model. Important physics is associated with con-dat@ sets from references 9 and 16-20. The agreement
stantD. In effect,D simulates the modifications of the with experiment is excellent and is better than all other
reaction cross sections caused by Pauli blocking. Theempirical models reported earlier, which is particularly
Pauli blocking effect, which has not been taken into important in view of the fact that the agreement is excel-
account in other empirical calculations, is being intro- €Nt throughout the whole energy range—up to a few
duced here for the first time. Introduction of the Pauli AG€V. We notice, again, that at the lower energy end,

blocking effect helps present a universal picture of the he cross sections are modified by the Coulomb interac-
reaction cross sections. tion, and at the intermediate and high energy end, Pauli

_ blocking effects become increasingly important. It will
At lower energies (below several tens of AMeV) pe interesting to see how the model compares with the

where the overlap of interacting nuclei is small (and pnew experimental data as and when these become
where the Coulomb interaction modifies the reaction gyailable.

cross sections significantly), the modifications of the

cross sections caused by Pauli blocking are small and

gradually play an increasing role as the energy increasesyasa Langley Research Center
which leads to higher densities where Pauli blocking Hampton, VA 23681-0001
becomes increasingly important. Interestingly enough, December 17, 1996
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Figure 1. Reaction cross sections as a function of energy*f@Be collisions.
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Figure 2. Reaction cross sections as a function of energy*fc}éc collisions.
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Figure 3. Reaction cross sections as a function of energyif(féAl collisions.
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Figure 4. Reaction cross sections as a function of energy*fdi%‘lze collisions.
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Figure 5. Reaction cross sections as a function of energy«‘@H collisions.
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Figure 6. Reaction cross sections as a function of energy#c}léc collisions; dashed line is from reference 10.
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Figure 7. Reaction cross sections as a function of energynfo]lgo collisions.
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Figure 8. Reaction cross sections as a function of energyftﬁﬁSi collisions.
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Figure 11. Reaction cross sections as a function of energwftggNi collisions.
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Figure 12. Reaction cross sections as a function of ener@wfcggNi collisions.
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Figure 13. Reaction cross sections as a function of energy ﬂo}géSn collisions.
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Figure 14. Reaction cross sections as a function of ener@y*fcggng collisions.
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Figure 15. Reaction cross sections as a function of energyifefggca collisions.
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Figure 16. Reaction cross sections as a function of energyifefggzr collisions.
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Figure 20. Reaction cross sections as a function of enerdgGor 30Ca collisions.
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Figure 21. Reaction cross sections as a function of eneréﬁ(i!our ggFe collisions.
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Figure 22. Reaction cross sections as a function of energ}ﬁ@ouf gan collisions.
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Figure 23. Reaction cross sections as a function of enerd@@or ﬁSi collisions.
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Figure 24. Reaction cross sections as a function of enerd@@or ‘218Ca collisions.
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Figure 25. Reaction cross sections as a function of energ}gﬂbr 23Co collisions.
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Figure 26. Reaction cross sections as a function of energ}@@or ggNi collisions.
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Figure 27. Reaction cross sections as a function of enerégﬁbr zgng collisions.
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Figure 28. Reaction cross sections as a function of enerégNleH 6C collisions.
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Figure 29. Reaction cross sections as a function of energyfite + | Al

collisions.
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Figure 31. Reaction cross sections as a function of energyNer+ “g.,Pb collisions.
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Figure 32. Reaction cross sections as a function of energyNer+ ~g.) collisions.
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Figure 33. Reaction cross sections as a function of ener@éﬁe{ﬁMg collisions.
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Figure 34. Reaction cross sections as a function of enerﬁﬁSe’rgAl collisions.



3000 —— . ——

I — Empirical model (ours) ]
i + + Experiment i
2000 |- 7
Og» mb i '
1000 |- 7

100 10t 102 103

Energy, A MeV
Figure 35. Reaction cross sections as a function of enerﬁ@bﬁ ggNi collisions.
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Figure 36. Reaction cross sections as a function of ene@?@bl’r %Ni collisions.
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Figure 37. Reaction cross sections as a function of enerégﬂtoﬁr 2779 collisions.
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Figure 39. Reaction cross sections as a function of enerégﬁtoﬁr ZS’SU collisions.
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Figure 40. Reaction cross sections as a function of eneréﬁ@aﬁ ‘2‘8Ca collisions.
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Figure 41. Reaction cross sections as a function of ener@@{oﬁ- ggCu collisions.
6000 ———r ————ry ——————
4000 [~ -
Og» mb L i
2000 —
L — Empirical model (ours)
+ + Experiment
0 L L R | L L ool L L Lo
109 10t 102 103

Energy, A MeV

Figure 42. Reaction cross sections as a function of ener@ﬁl‘toﬁ lggLa collisions.
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Figure 45. Reaction cross sections as a function of eneré@(oﬁ- 2S??Bi collisions.
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